Skip to content
DIA
DIA

Développement de l'Intelligence Artificielle au Maroc

  • Accueil
  • Catégories
  • BTS
  • Connexion
DIA
DIA

Développement de l'Intelligence Artificielle au Maroc

A Brief History of Machine Learning: From Early Mathematics to Generative AI

Adam Es-salmi, 16/11/202516/11/2025
Partager l'article
facebook linkedin emailwhatsapptelegram

Machine learning (ML) is often seen as a modern invention, but its foundations were laid centuries ago. Over time, breakthroughs in mathematics, computer science and neuroscience have shaped the discipline we know today. This article offers a clear timeline of the major milestones that transformed machine learning into one of the most influential technologies of our era.


1. The Mathematical Roots (1763–1940s)

Before computers existed, the core ideas of ML were emerging in mathematics:

  • 1763 – Bayes’ Foundations
    Thomas Bayes introduces the principles behind Bayesian probability, which later becomes essential for probabilistic learning.
  • 1805 – Least Squares Method
    Adrien-Marie Legendre formalizes least squares, still widely used for regression and model fitting.
  • 1812 – Bayes’ Theorem Expanded
    Pierre-Simon Laplace further develops Bayesian reasoning, paving the way for statistical inference.
  • 1913 – Markov Chains
    Andrey Markov proposes a new mathematical framework for sequential processes—an idea that later defines many modern ML models.

These early contributions created the mathematical backbone that machine learning algorithms still rely on today.


2. The Birth of Artificial Intelligence (1940s–1960s)

With the rise of computers, researchers began imagining machines that could learn:

  • 1943 – First Artificial Neuron
    McCulloch and Pitts design a mathematical model inspired by biological neurons.
  • 1950 – Alan Turing’s “Learning Machine”
    Turing envisions machines capable of adapting their behavior—an early idea of evolutionary algorithms.
  • 1957 – The Perceptron
    Frank Rosenblatt builds a system capable of learning simple patterns. This generates enormous optimism.
  • 1960s – Early Algorithms
    Nearest Neighbor techniques appear, simplifying pattern recognition and classification.

This period is characterized by enthusiasm and experimentation, even though the computing power was still extremely limited.


3. Challenges and Renewed Momentum (1970s–1980s)

The initial excitement slows down during the AI winter, caused by underwhelming results:

  • 1969 – Limits of Neural Networks Highlighted
    A famous book by Minsky and Papert shows that perceptrons cannot learn complex functions. Funding declines.

Despite the setbacks, important ideas silently emerged:

  • 1970 – Automatic Differentiation
    The foundation of modern backpropagation, crucial for training deep neural networks.
  • 1979 – Neocognitron
    A precursor to convolutional neural networks (CNNs), later powering image recognition.
  • 1986 – Backpropagation Rediscovered
    Rumelhart, Hinton, and Williams show how multilayer networks can learn efficiently, relaunching neural network research.

The stage was set for more powerful models.


4. The Rise of Modern Machine Learning (1990s–2000s)

Machine learning shifts from rule-based systems to data-driven approaches:

  • 1990s – SVMs and RNNs
    Support-vector machines and recurrent neural networks become popular. Computational power grows, enabling larger experiments.
  • 1995 – Random Forests
    A new powerful ensemble method emerges and quickly becomes a standard.
  • 1998 – MNIST Dataset
    A crucial benchmark for handwriting recognition, shaping early deep learning experiments.
  • 2006 – The Netflix Prize
    A global competition pushes collaborative filtering and recommendation systems forward.
  • 2009 – ImageNet
    A massive dataset that transforms computer vision and accelerates the deep learning revolution.

This decade establishes machine learning as a practical engineering discipline.


5. The Deep Learning Revolution (2010s)

Thanks to GPUs and big data, deep learning becomes truly effective:

  • 2012 – AlexNet
    A deep neural network dramatically outperforms previous models on ImageNet. This moment is considered the beginning of the modern AI boom.
  • 2013 – Word2vec
    Text processing is transformed as words are represented as vectors capturing meaning.
  • 2014 – DeepFace
    Facebook achieves near-human accuracy in face recognition.
  • 2016 – AlphaGo
    Google DeepMind’s system defeats a world champion in Go, a game long considered too complex for computers.
  • 2017 – Transformers
    Google’s new architecture revolutionizes sequence processing and becomes the backbone of today’s large language models.

Deep learning becomes the engine behind speech recognition, translation, vision, and automation.


6. The Era of Generative AI (2020s–Today)

Machine learning enters everyday life with unprecedented impact:

  • 2020–2021 – AlphaFold 2
    A scientific breakthrough: protein structure prediction reaches near-experimental accuracy.
  • 2022 – ChatGPT
    OpenAI releases a conversational model that rapidly becomes a global phenomenon, bringing AI to the mainstream.
  • 2023 – LLaMA & GPT-4
    A new wave of large language models democratizes AI research and raises the bar for capabilities.
  • 2024 – AlphaFold 3
    DeepMind introduces a model capable of predicting interactions between all major molecular types, advancing drug discovery.

Generative models become the cornerstone of text, image, code, and even molecular generation—transforming industries and workflows.


Conclusion

From 18th-century probability theory to today’s generative AI, machine learning has evolved through cycles of optimism, skepticism, breakthroughs, and reinvention. Every decade brought new tools, new ideas, and new ways of understanding intelligence.

Today, machine learning is more than a technology—it is a driving force behind innovation in medicine, automation, industry, education, and creativity. As models grow more capable and more accessible, the coming years will likely redefine how humanity interacts with information, work, and knowledge itself.

Technologie et Innovation

Navigation de l’article

Précédent
Suivant

Adam Es-salmi

Développeur en Intelligence Artificielle | Étudiant en Brevet de Technicien Supérieur en Intelligence Artificielle (BTS DIA) | Centre de Préparation BTS Lycée Qualifiant El Kendi |
Direction Provinciale Hay Hassani |
Académies Régionales d’Éducation et de Formation Casablanca-Settat
(AREF) |
Ministère de l'Éducation Nationale, du Préscolaire et des Sports
LinkedIn :www.linkedin.com/in/es-salmiadam

Laisser un commentaire Annuler la réponse

Vous devez vous connecter pour publier un commentaire.

Articles récents

  • Зачем человекам нравится конкурировать в развлечениях
  • По каким причинам головной мозг так предпочитает восприятие непредсказуемости
  • Untitled
  • Untitled
  • По каким причинам мозг так предпочитает ощущение непредсказуемости

Commentaires

  1. Lina ZREWIL sur Soufiane Karroumi : Un Ingénieur Logiciel Brillant et Inspirant
  2. Fatima Zahra MAHRACHA sur Soufiane Karroumi : Un Ingénieur Logiciel Brillant et Inspirant
  3. Ayoub MOURID sur Alma Parfum : L’innovation au service de la personnalisation et de la solidarité
  4. Ayoub MOURID sur Café Samba : Quand l’artisanat, l’innovation et la technologie se rencontrent
  5. Lina ZREWIL sur Quel café pour quel moment ? Quand l’IA nous conseille selon notre humeur et notre énergie

Archives

  • novembre 2025
  • octobre 2025
  • septembre 2025
  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • août 2024
  • juillet 2024
  • juin 2024
  • mai 2024
  • mars 2024
  • février 2024
  • janvier 2024
  • décembre 2023
  • novembre 2023
  • octobre 2023
  • août 2023
  • mai 2023
  • février 2023
  • janvier 2023
  • novembre 2022
  • août 2022
  • mars 2022
  • novembre 2021
  • février 2021

Catégories

  • Agriculture
  • Algorithmique
  • Commerce
  • Divertissement
  • Éducation
  • Éducation et Technologie
  • Énergie
  • Finance and Technology
  • Finance et Technologie
  • Finances et Technologie
  • Formation
  • Gouvernement
  • Industrie
  • Informatique
  • Mathématiques
  • Météo
  • Robotique
  • Santé
  • Santé et Technologie
  • Sports
  • Technologie
  • Technologie Éducative
  • Technologie et Agriculture
  • Technologie et Archéologie
  • Technologie et Commerce
  • Technologie et Créativité
  • Technologie et Droit
  • Technologie et Environnement
  • Technologie et Gestion
  • Technologie et Immobilier
  • Technologie et Innovation
  • Technologie et jeux
  • Technologie et Médias
  • Technologie et Sport
  • Technologie et Tourisme
  • Technologie financière
  • Technology & Culture
  • Transition énergétique
  • Transport
  • Uncategorized
  • الإسلام
©2024 DIA | Créé avec ❤️ par CDS en collaboration avec BTS El Kendi | Direction Provinciale Hay Hassani | AREF Casablanca-Settat