Skip to content
DIA
DIA

Développement de l'Intelligence Artificielle au Maroc

  • Accueil
  • Catégories
  • BTS
  • Connexion
DIA
DIA

Développement de l'Intelligence Artificielle au Maroc

Understanding “Attention Is All You Need”: A Revolution in Deep Learning

Hafsa WARDOUDY, 18/06/202518/06/2025
Partager l'article
facebook linkedin emailwhatsapptelegram

In 2017, a team of researchers at Google introduced a groundbreaking paper titled “Attention Is All You Need”. This work, published by Vaswani et al., proposed a new architecture called the Transformer. This model would soon redefine the field of Natural Language Processing (NLP), powering large language models like GPT and BERT.

Background: The Problem with RNNs and CNNs

Before the Transformer, models for processing sequences (like text) mostly relied on Recurrent Neural Networks (RNNs) or Convolutional Neural Networks (CNNs). However, these models had limitations:

  • RNNs process tokens one by one, which limits parallelization and makes them slow.
  • CNNs can handle some parallel processing, but they still struggle with long-range dependencies (understanding relationships between distant words).

There was a need for a model that could:

  • Process sequences in parallel.
  • Capture long-range dependencies more efficiently.

The Breakthrough: Attention Mechanism

The Transformer model eliminates recurrence and convolutions altogether. Instead, it relies solely on attention mechanisms, specifically a technique called “self-attention.”

What is Self-Attention?

Self-attention is a method where each word (or token) in a sentence looks at every other word and determines which ones are important for understanding its meaning.

For example, in the sentence:

“The cat sat on the mat because it was tired.”

The word “it” refers to “the cat”. Self-attention helps the model learn this relationship.

The Transformer Architecture

The Transformer has an encoder-decoder structure:

  • Encoder: Takes the input sentence (e.g., English) and processes it.
  • Decoder: Generates the output sentence (e.g., French translation).

Each of these is made up of layers that contain:

  1. Multi-Head Self-Attention
  2. Feed-Forward Neural Networks
  3. Layer Normalization and Residual Connections

Let’s break this down:

1. Input Embedding + Positional Encoding

Words are first converted into vectors (embeddings). Since the model processes all words in parallel, we need to add information about word order using positional encoding (a unique signal added to each word’s vector).

2. Multi-Head Attention

Instead of performing attention once, the model does it multiple times in parallel (called « heads »). Each head learns different relationships in the sentence.

3. Feed-Forward Networks

Each word’s representation is passed through a small neural network, independently of others.

4. Residual Connections & Normalization

Each sub-layer has a shortcut (residual) connection and is followed by layer normalization. This helps the model train faster and more stably.

Advantages of the Transformer

  • Parallel Processing: All tokens can be processed at once.
  • Long-Range Dependencies: Self-attention captures relationships between distant words efficiently.
  • Scalability: It scales well to very large datasets and large models.

Impact on the Field

The Transformer model has had a massive impact. It’s the foundation of modern NLP systems, including:

  • BERT (Bidirectional Encoder Representations from Transformers)
  • GPT (Generative Pre-trained Transformer)
  • T5, XLNet, and many more

These models are now used in everything from chatbots to search engines, translation services, and text summarization tools.


Conclusion

The “Attention Is All You Need” paper introduced a simple yet powerful idea: attention alone, without recurrence or convolutions, is enough to model language. This innovation led to a new era of AI, enabling models that understand, generate, and translate language with remarkable accuracy.

Whether you’re studying AI or just interested in how modern tools like ChatGPT work, the Transformer is the key to understanding today’s breakthroughs in deep learning.

Éducation Informatique AIDeep Learningintelligence artificielle

Navigation de l’article

Précédent

Hafsa WARDOUDY

Développeuse en Intelligence Artificielle | Étudiante en Brevet de Technicien Supérieur en Intelligence Artificielle (BTS DIA) | Centre de Préparation BTS Lycée Qualifiant El Kendi |
Direction Provinciale Hay Hassani |
Académies Régionales d’Éducation et de Formation Casablanca-Settat (AREF) |
Ministère de l'Éducation Nationale, du Préscolaire et des Sports

Laisser un commentaire Annuler la réponse

Vous devez vous connecter pour publier un commentaire.

Articles récents

  • Understanding “Attention Is All You Need”: A Revolution in Deep Learning
  • Les batteries tout-solide : la révolution silencieuse des véhicules électriques
  • Zynerator : La startup marocaine qui révolutionne le développement logiciel grâce à l’IA
  • GITEX Africa 2025 à Marrakech : Quand le continent écrit son futur numérique
  • ChatGPT-4o and Ghibli-Inspired Image Generation: A New Era of AI Creativity

Commentaires

  1. Lina ZREWIL sur Soufiane Karroumi : Un Ingénieur Logiciel Brillant et Inspirant
  2. Fatima Zahra MAHRACHA sur Soufiane Karroumi : Un Ingénieur Logiciel Brillant et Inspirant
  3. Ayoub MOURID sur Alma Parfum : L’innovation au service de la personnalisation et de la solidarité
  4. Ayoub MOURID sur Café Samba : Quand l’artisanat, l’innovation et la technologie se rencontrent
  5. Lina ZREWIL sur Quel café pour quel moment ? Quand l’IA nous conseille selon notre humeur et notre énergie

Archives

  • juin 2025
  • mai 2025
  • avril 2025
  • mars 2025
  • février 2025
  • janvier 2025
  • décembre 2024
  • novembre 2024
  • octobre 2024
  • septembre 2024
  • janvier 2023

Catégories

  • Agriculture
  • Algorithmique
  • Commerce
  • Divertissement
  • Éducation
  • Éducation et Technologie
  • Énergie
  • Finance and Technology
  • Finance et Technologie
  • Finances et Technologie
  • Formation
  • Gouvernement
  • Industrie
  • Informatique
  • Mathématiques
  • Météo
  • Robotique
  • Santé
  • Santé et Technologie
  • Sports
  • Technologie
  • Technologie Éducative
  • Technologie et Agriculture
  • Technologie et Archéologie
  • Technologie et Commerce
  • Technologie et Créativité
  • Technologie et Droit
  • Technologie et Environnement
  • Technologie et Gestion
  • Technologie et Immobilier
  • Technologie et Innovation
  • Technologie et jeux
  • Technologie et Médias
  • Technologie et Sport
  • Technologie et Tourisme
  • Technologie financière
  • Technology & Culture
  • Transition énergétique
  • Transport
  • Uncategorized
  • الإسلام
©2024 DIA | Créé avec ❤️ par CDS en collaboration avec BTS El Kendi | Direction Provinciale Hay Hassani | AREF Casablanca-Settat